产品|公司|采购|招标

网站帮助网站服务发布采购发布供应

MC1000 8通道藻类培养与在线监测系统

参考价面议
具体成交价以合同协议为准
产品标签:

在线询价收藏产品 点击查看联系电话
北京易科泰生态技术有限公司成立于2002年,为国家*,致力于生态-农业-健康研究监测技术推广、研发与服务,特别是在光谱成像技术(高光谱成像技术、叶绿素荧光成像技术、红外热成像技术、无人机遥感等)、植物表型分析技术、呼吸与能量代谢测量技术等方面,与企业PSI、Specim、Sable等合作,致力于植物科学、土壤与地球科学、动物能量代谢、水体与藻类及生态环境领域*仪器技术的引进推广和技术研发集成,为植物/作物表型分析、生态修复及生态保护、能量代谢测量等提供规划设计、技术方案与系统集成、技术咨询与科技服务。公司技术团队80%以上具备硕士或硕士以上学位,并与*研究生院、中科院植物研究所、中科院动物所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学、中国海洋大学、陕西师范大学、内蒙古大学等建立了*的技术合作交流关系。 公司下设有叶绿素荧光技术与植物表型业务部、EcoLab?实验室、光谱成像与无人机遥感事业部及无人机遥感研究中心(与陕西师范大学合作建立)、动物能量代谢实验室、内蒙古阿拉善蒙古牛生态牧业研究院及青岛分公司。实验室拥有叶绿素荧光成像、叶绿素荧光仪、水体藻类荧光仪、SPECIM高光谱仪、WORKSWELL红外热成像仪、EasyChem*、MicroMac1000水质在线监测系统、ACE土壤呼吸自动监测系统、SoilBox便携式土壤气体通量测量系统、动物呼吸测量系统、LCpro+光合作用测量仪、Hood土壤入渗仪、年轮分析仪等各种仪器设备,可以进行实验研究分析、实验培训等,欢迎与易科泰生态研究室开展合作研究。 易科泰公司与欧洲PSI公司(叶绿素荧光技术与表型分析技术)、美国SABLE公司(动物能量代谢技术)、欧洲SPECIM公司(高光谱成像技术)、欧洲WORKSWELL公司(红外热成像技术)、欧洲Lightigo公司(LIBS元素分析技术)、欧洲BCN无人机遥感中心、欧洲ITRAX公司(样芯密度扫描与元素分析)、美国VERIS公司、英国ADC公司、德国UGT公司、欧洲SYSTEA公司等*生态仪器技术领域的研发机构和厂商建立了密切的合作关系,在FluorCam叶绿素荧光成像与荧光测量技术、PlantScreen植物表型分析技术、高光谱成像技术、红外热成像技术、光合作用与植物生态研究监测、土壤呼吸与碳通量研究监测、动物呼吸代谢测量、水质分析与藻类研究监测、CoreScanner样芯密度CT与元素分析技术、LIBS元素分析技术、无人机生态遥感技术等生态仪器技术及其系统方案集成有着丰富的经验,成为我国农业、林业、地球科学、生态环境研究等领域科技进步的重要研究力量。由公司研制生产的EcoDrone?无人机遥感平台、SoilTron?多功能小型蒸渗仪技术、SoilBox?土壤呼吸测量技术、PhenoPlot?轻便型作物表型分析系统、SCG-N土壤剖面CO2/O2梯度监测系统、植物生态监测技术、动物能量代谢测量技术等,在中科院修购项目、*学科群项目、CERN网络(生态系统监测网络)等项目中发挥重要作用 “工欲善其事,必先利其器”,易科泰公司将秉承“利其器,善其事”的经营理念,为国内生态-农业-健康研究与发展提供的技术方案和服务。
激光产品,数据采集器
MC1000 8通道藻类培养与在线监测系统 产品信息

MC1000 8通道藻类培养与在线监测系统由8个100ml藻类培养试管、水浴控温系统、LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生态研究、水生态研究等,其主要功能特点如下:

image.png

1. 8通道藻类培养,每个藻类培养试管可培养85ml藻液

2. LEDs光源,可对每个培养试管独立调节控制和设置光强度和时间,如昼夜变化等

3. 光密度在线监测,包括OD680、OD720,监测数据自动存储

4. 溶解氧在线监测(备选)以测量分析藻类光合作用等

5. 温度、光照控制可用户设置不同的程序模式

6. 气泡混匀:可通过调节阀手动调节气流量以对培养试管内的藻类进行混匀

7. 可选配O2/CO2监测系统,在线监测藻类光合放氧和CO2吸收

8. 可选配藻类荧光测量模块

应用领域:

l 多通道同步藻类培养

l 同步梯度胁迫实验

l 培养条件优化

l 控制培养条件与藻类生长动力学监测

仪器型号:

MC 1000-OD: 8个通道光源颜色相同,标配冷白光LED

MC 1000-OD-WW8个通道光源颜色相同,标配暖白光LED

MC 1000-OD-MULTI: 8个通道光源颜色不同,分别为1)紫光405nm,2)品蓝光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。

MC 1000-OD-MIX:每个通道可配备多8种不同颜色的LED光源,光源颜色可由用户定制,可选颜色为1)紫光405nm,2)品蓝光450nm,3)蓝光470nm,4)暖白光,5)绿光530nm,6)橙红光615nm,7)深红光660nm,8)远红光730nm

image.png

技术指标:

1. 藻类同步培养通道:8个

2. 培养管容量:100ml,建议大培养容量85ml

3. 在线即时监测参数:分别监测每个培养管的OD680和OD720,数据自动保存到主机内存中,PIN光电二极管检测器,665-750nm带通滤波器

4. 精确控温范围:标准配置高于环境温度5-10℃(与光强有关)~60℃,可选配15-60℃(环境温度20℃,需加配制冷单元)

5. 加热系统:150W筒形加热器

6. 水浴体积:5L

7. 水浴自动补水模块(选配):水浴水位因蒸发降低后可自动补水

8. 光源系统:全LED光源,可在0-*范围内调控,每个通道的光强可分别独立调控

1) MC 1000-OD标配冷白光LED,可选配暖白光、红光(635nm)或蓝光(470nm)LED;光强0-1000μmol/m2/s可调, 可升级至0-2500μmol/m2/s

2) MC 1000-OD-WW标配暖白光LED,光强0-1000μmol/m2/s可调,更高光强可定制

3) MC 1000-OD-MULTI8个通道光源颜色不同,分别为紫光405nm,蓝紫光450nm,蓝光470nm或冷白光,暖白光,绿光540nm,黄橙光590nm,红光640nm,远红光730nm;光强0-1000μmol/m2/s可调

4) MC 1000-OD-MIX:每个通道可配备多8种不同颜色的LED光源,光源颜色可由用户定制,大光强可达2500μmol/m2/s

image.png

9. 控光模式:可静态或动态设置光照程序,如正弦、昼夜节律、脉冲等

10. 控制单元显示屏:可调控培养程序和显示数据

11. 气流调控:通过多管调节阀对8个培养管手动独立调控气体流量

12. image.pngOD测量程序:将主机内存中的OD数据下载到电脑中并以图表形式显示,数据可导出为TXT或Excel文件

13. MC实时在线监测分析模块(含工作站和软件基础版或高级版,选配)

1) 同时控制2台MC1000(基础版)或无限台MC1000(高级版)

2) 通过PBR软件动态调控光照和温度模式

3) 通过光密度(OD680、OD720)变化实时监测藻类生物量

4) 对生长速率进行实时回归分析

5) 多数据管理功能(过滤、查找、多重导出)

6) 可将测量数据、培养程序和其他信息保存到数据库中

7) 通过GUI图形用户界面设置培养程序并在线显示测量数据图

8) 数据可导出为CSV、Excel或XML文件

9) image.png支持GMS高精度气体混合系统(*高级版)

10) 用户自编程培养程序(*高级版)

11) 设定实验起始时间(*高级版)

12) 电子邮件通知(*高级版)

14. GMS150高精度气体混合系统(选配):可控制气体流速和成分,标配为控制氮气/空气和二氧化碳,气源需用户自备

15. 恒浊控制模块(选配):带有8个控制阀,可独立控制8个培养管的浊度,由软件自动控制

16. O2/CO2监测系统(选配):8通道续批式监测藻类CO2吸收或光合放氧通量:

1) 氧气分析测量:氧气测量范围0-100%,分辨率0.0001%,精确度优于0.1%,温度、压力补偿,数码过滤(噪音)0-50秒可调,具两行文字数字LCD背光显示屏,可同时显示氧气含量和气压

2) 二氧化碳分析测量:双波长非色散红外技术,测量范围0-5%或0-15%两级选择(双程),分辨率优于0.0001%或1ppm(可达0.1ppm),精确度1%,通过软件温度补偿,具两行文字数字LCD背光显示屏,可同时显示CO2含量和气压,具数码过滤(噪音)功能

3) 气体抽样与气路切换:具备隔膜泵、气流控制针阀和精密流量计,气路自动定时切换功能

17. 藻类荧光测量模块(选配):用于测量藻类荧光参数以反映藻类状态及浓度,荧光测量程序包括Ft,QY,OJIP-test,NPQ、光响应曲线等,可选配探头式测量或试管式测量:

1) 探头式测量:具备光纤测量探头,可插入培养液中原位测量藻类荧光参数

2) 试管式测量:具备测量杯,可取样精确测量藻类荧光参数及光密度值

18. 通讯方式:USB

19. 尺寸:71×33×21 cm

20. 重量:13kg

21. 供电:110-240V

应用案例:

image.png

莱茵衣藻全基因组重测序的样品预培养与生长动态监测(Flowers, 2015, Plant Cell)

image.png

通过基因工程改造莱茵衣藻控制生物污染(Loera-Quezada, 2016, Plant Biotechnology Journal)

产地:捷克

参考文献:

1. Sengupta A, et al. 2019. The effect of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. Journal of Biotechnology 289: 1-6

2. Pa A, et al. 2019. Biosynthesis of Nutraceutical Fatty Acids by the Oleaginous Marine Microalgae Phaeodactylum tricornutum Utilizing Hydrolysates from Organosolv-Pretreated Birch and Spruce Biomass. Marine drugs 17(2): 119

3. Li Y, et al. 2019. Transcriptome analysis reveals regulation of gene expression during photoacclimation to high irradiance levels in Dunaliella salina (Chlorophyceae). Phycological Research, DOI: 10.1111/pre.12379

4. Zheng Z, et al. 2019. Far red light induces the expression of LHCSR to trigger nonphotochemical quenching in the intertidal green macroalgae Ulva prolifera. Algal Research 40: 101512

5. Liberton M, et al. 2019. Enhanced nitrogen fixation in a glgX-deficient strain of Cyanothece sp. strain ATCC 51142, a unicellular nitrogen-fixing cyanobacterium. Applied and Environmental Microbiology 85(7): e02887-18

6. Taparia Y, et al. 2019. A novel endogenous selection marker for the diatom Phaeodactylum tricornutum based on a unique mutation in phytoene desaturase 1. Scientific Reports 9: 8217

7. Mundt F, et al. 2019. RNA isolation from taxonomically diverse photosynthetic protists. Limnology and Oceanography: Methods 17(3): 190-199

8. Ferro L, et al. 2018. Subarctic microalgal strains treat wastewater and produce biomass at low temperature and short photoperiod. Algal Research 35: 160-167

9. Jaiswal D, et al. 2018. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India. Scientific Reports 8:16632

10. Willamme R, et al. 2018. Surprisal analysis of the transcriptomic response of the green microalga Chlamydomonas to the addition of acetate during day/night cycles. Chemical Physics 514: 154-163

11. Santos-Merino M, et al. 2018. Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. Biotechnol Biofuels 11:239

12. Hagemann M, et al. 2018. The Synechocystis sp. PCC 6803 Genome Encodes Up to Four 2-Phosphoglycolate Phosphatases. Front. Plant Sci. 9:1718

13. Ilík P, et al. 2018. Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. New Phytologist 218: 1278–1287

14. De-Luca R, et al. 2018. Modelling the photosynthetic electron transport chain in Nannochloropsis gaditana via exploitation of absorbance data. Algal Research 33: 430-439

15. Perozeni F, et al. 2018. LHCSR expression under HSP70/RBCS2 promoter as a strategy to increase productivity in microalgae. International Journal of Molecular Sciences 19(1): 155

16. Kämäräinen J, et al. 2017. Pyridine nucleotide transhydrogenase PntAB is essential for optimal growth and photosynthetic integrity under low‐light mixotrophic conditions in Synechocystis sp. PCC 6803. New Phytologist 214: 194–204

17. Vidal‐Meireles A, et al. 2017. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress‐induced response via the VTC2 gene encoding GDP‐l‐galactose phosphorylase. New Phytologist 214: 668–681


在找 MC1000 8通道藻类培养与在线监测系统 产品的人还在看

提示

×

*您想获取产品的资料:

以上可多选,勾选其他,可自行输入要求

个人信息:

对比栏

下载农机E站APP
让生意变得更容易!农机E站APP
微信公众号

微信公众号

农机网微信号

编辑部:228800377 客服部:749212133市场部:2756149947